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1. Introduction

The “file drawer problem” arrises when reports of experiments with insignificant results
are left in a file drawer and not published or otherwise observed. Rosenthal (1979) coined
the phrase and provides a nice summary of the problem in his abstract:

For any given research area, one cannot tell how many studies have been
conducted but never reported. The extreme view of the “file drawer prob-
lem” is that journal are filled with the 5% of the studies that show Type I
errors, while the file drawers are filled with the 95% of the studies that show
nonsignificant results.

Rosenthal addresses the problem by aggregating the p-values from published studies. Rosen-
thal’s approach requires the reviewer to have an opinion about the number of studies in file
drawers. If this number is small relative to the number needed to reduce the overall level
of significance to an unacceptable value, then the reviewer may suppose the problem is not
substantial in this case.

The current paper takes a different approach to addressing the file drawer problem. Un-
published studies constitute missing datasets.1 As a result of this selection process, the
sample space for observed datasets is truncated. The sampling distribution for observed
datasets is restricted to a truncation set implied by the critical region for the test statistic.
The truncated sampling distribution is normalized by the probability of the truncation set,
and this probability is given by the power function. Because the normalization involves
model parameters, the likelihood is affected. Such changes in the likelihood can have dra-
matic effects on inference regarding the parameters when sample sizes are not sufficiently
large.

The approach taken here has something in common with Iyengar and Greenhouse (1988)
who use “weighting functions” which embody the probability of the observations being
selected. They discuss multiplying the likelihood function by a weighting function. See also
Bayarri and DeGroot (1987) and Bayarri and DeGroot (1991).

Other related literature. Related papers include Gelman and Tuerlinckx (2000), Button
et al. (2013), Gelman and Carlin (2014), Gelman and Loken (2014), and the references
contained therein.

Outline. Section 2 presents the general idea regarding truncated datasets. Section 3
presents the main illustration. Section 4 presents the truncated sampling distribution for
the sufficient statistics. Section 5 introduces multiple datasets. Section 6 introduces some
generalizations to the model. Section 7 shows how an optimal Bayesian decision can produce
a frequentist selection process.

There are a number of appendices. Appendix A presents addition details about the
normal case. Appendix B presents a simple example that illustrates the main point. Ap-
pendix C presents a motivating story (for the main case of interest) from an earlier version
of this paper that may still be useful. Appendix D presents the Bayesian analysis absent

1The missing-data mechanism is not ignorable and must be taken into account to obtain valid inference.
See Gelman et al. (2014, Chapters 8 and 18). I will not refer to ignorability further since I do not find that
framework convenient here.
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the selection process. Appendix E begins an investigation into expected power as a guide
to sample size.

2. Truncated datasets

When the sample space for a dataset is truncated, only datasets that lie within the trun-
cation set will be observed. The sampling distribution for observed datasets is therefore
normalized by the probability of the truncation set. This probability depends on the pa-
rameters of the unrestricted distribution. Consequently, the likelihood of the parameters
given an observed dataset incorporates the probability of the truncation set, which in turn
affects the posterior distribution for the parameters.

The critical region for a test statistic characterizes a truncated sample space for a dataset.
The region of truncation will depend on all of the observations jointly. A process that selects
only significant results (datasets composed of observations for which the test statistic is in
the critical region) produces datasets from a truncated distribution. Such a selection process
can be thought of as a form of rejection sampling: Construct a dataset and reject it unless
it lies in the truncated set.

When the truncation set is generated by the critical region for a test statistic, the prob-
ability of the truncation set is the power function. Consequently, the power function plays
a central role in adjusting the posterior distribution to account for the dataset selection
process.

Distribution with full sample space. Let the joint density for the dataset (i.e., the
observations) y and the parameters θ be given by

p(y, θ) = p(y|θ) p(θ) for (y, θ) ∈ Y ×Θ. (2.1)

Note ∫
Y
p(y|θ) dy = 1 for all θ ∈ Θ. (2.2)

The posterior distribution for θ given y is

p(θ|y) =
p(y|θ) p(y)

p(y)
∝ p(y|θ) p(θ), (2.3)

where

p(y) =

∫
Θ
p(y|θ) p(θ) dθ. (2.4)

Truncation set. Given Λ ⊂ Y, define

PΛ(θ) :=

∫
Y

1(y ∈ Λ) p(y|θ) dy =

∫
Λ
p(y|θ) dy, (2.5)

where

1(x) =

{
1 x is true

0 x is false
. (2.6)

Note that PΛ(θ) = Pr[y ∈ Λ|θ] given (2.1). If T (y) is a test statistic and Λ = {y ∈ Y :
T (y) ∈ Ω} where Ω is the critical region, then PΛ(θ) is the power function.
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Special case. Suppose y = (y1, . . . , yn) ∈ Y = Yn and p(y|θ) =
∏n
j=1 p(yj |θ). In addition

suppose Λ = Ln. Then

PΛ(θ) =

∫
Λ
p(y|θ) dy =

n∏
j=1

∫
L
p(yj |θ) dyj = PL(θ)n. (2.7)

Truncated distribution. Let (y, θ) ∈ Λ × Θ for some truncation set Λ ⊂ Y for which
PΛ(θ) > 0 for all θ ∈ Θ. Let SΛ denote the truncation of y to Λ. Then (assuming y ∈ Λ)

p(y, θ|SΛ) = p(y|θ, SΛ) p(θ), (2.8)

where

p(y|θ, SΛ) =
p(y|θ)
PΛ(θ)

. (2.9)

Note ∫
Λ
p(y|θ, SΛ) dy = 1 for all θ ∈ Θ. (2.10)

The posterior distribution for θ can be expressed as

p(θ|y, SΛ) ∝ p(y|θ, SΛ) p(θ) ∝ p(θ|y)

PΛ(θ)
. (2.11)

Thus the probability of the truncation set plays a central role in determining the posterior
distribution for the parameter.

Sampling. Equation (2.11) suggests that draws from the target distribution p(θ|y, SΛ)

can be obtained via importance sampling by resampling draws {θ(r)}Rr=1 from the proposal
distribution p(θ|y) where the resampling probabilities are proportional to the importance

weights q(r) = 1/PΛ(θ(r)). From this perspective it is evident that if the draws from the
unadjusted posterior p(θ|y) are largely located where the adjustment factor 1/PΛ(θ) is
relatively flat, then the truncation has little effect on inference.

If an analytical expression for PΛ(θ) is not available, it can be numerically approximated

as follows.2 Note that if y′ ∼ p(y|θ(r)), then 1(y′ ∈ Λ) has a Bernoulli distribution with

probability PΛ(θ(r)). With repeated sampling, one can approximate q(r) = 1/PΛ(θ(r)) to

any desired degree of accuracy. For example, let s(r) ≥ 1 denote the number of successes in
T (r) trials given θ(r). Then let q̃(r) = (T (r) + 1)/s(r).3

2As an alternative when PΛ(θ) is not available, one can adopt approximate Bayesian computation (ABC)
to make draws of θ from the posterior. The r-th draw from the posterior for θ is computed as follows.
First draw θ′ ∼ p(θ) from the prior. Next draw y′ ∼ p(y|θ′) from the unrestricted sampling distribution
repeatedly until y′ ∈ Λ. (The expected number of draws equals 1/PΛ(θ′).) If y′ is sufficiently “close” to y,

then set θ(r) = θ′. Otherwise discard θ′ and start over.
3Let q = 1/γ where γ ∼ Beta(a, b). Then q − 1 ∼ BetaPrime(b, a). Suppose a = s+ 1 and b = T − s+ 1.

If s ≥ 1 then the mean is (T + 1)/s and if s ≥ 2 then the variance is (T+1) (T−s+1)

(s−1) s2
.
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3. Main application

The main application involves datasets composed of normally distributed observations
with unknown mean and variance. In particular, let y = (y1, . . . , yn) ∈ Y = Rn where

p(y|θ) =
n∏
j=1

N(yj |µ, τ2) (3.1)

and θ = (µ, τ2) ∈ Θ = R×R>0. It may be useful to think of µ as the unobserved true effect
and τ as the standard deviation of the noise inherent in the measurements.

Notation. Some notation is required in order to characterize and measure the truncation
set for this application.

Let Φ( · ) denote the cumulative distribution function (CDF) for the standard normal
distribution N(0, 1). Let Φν( · ) denote the CDF for Student-t(0, 1, ν) and let Φ−1

ν ( · ) denote
the associated quantile function. Further let Φν,δ( · ) denote the CDF of the noncentral t
distribution with degrees of freedom ν and noncentrality parameter δ. Note that Φν,0(x) ≡
Φν(x). Define

fν(x) := 2
(
1− Φν(x)

)
. (3.2)

Note f ′ν(x) = −2 Φ′ν(x) < 0 for all x ∈ R. See Figure 1 for an example where ν = 19.

Truncation set. Define the following statistics:

µ̂ :=
1

n

n∑
j=1

yj σ̂ :=

√∑n
j=1(yj − µ̂)2

n (n− 1)
(3.3a)

t̂ := µ̂/σ̂ π̂ := fn−1(|t̂|). (3.3b)

Note that π̂ ∈ (0, 1]. Given α ∈ (0, 1], the truncation set is

Λ = {y ∈ Y : π̂ < α}. (3.4)

The probability of the truncation set is

PΛ(µ, τ) = 1− Φn−1,
√
nµ/τ (cα) + Φn−1,

√
nµ/τ (−cα) where cα = f−1

n−1(α). (3.5)

Note that PΛ(µ, τ) depends on µ/τ , n, and α. It is convenient to adopt notation that
expresses this dependence:

P(µ/τ, n, α) := PΛ(µ/τ, 1). (3.6)

Note

P(0, n, α) = 1− Φn−1(cα) + Φn−1(−cα) = fn−1(cα) = α. (3.7)

Also note, P(µ/τ, n, 1) = 1.4 See Figure 2 for a plot of P(λ, n, α) and Figure 3 for a plot of
1/P(λ, n, α).

In passing note that if n = 2 and α = 1/2, then Λ = {(y1, y2) ∈ R2 : y1 y2 > 0} and
P(µ/τ, 2, 1/2) = Φ(−µ/τ)2 + Φ(µ/τ)2.

4If α = 1 then Λ = Y \B where B = {y ∈ Y : µ̂ = 0} and
∫
B
p(y|θ) dy = 0.
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Null hypothesis and significance level. Consider the null hypothesis H0 : µ = 0 and the
alternative hypothesis H1 : µ 6= 0. Let the test statistic be the t-statistic t̂ and let 1(|t̂| > cα)
characterize the critical region where cα is the critical value. Note that 1(|t̂| > cα) is
equivalent to 1(π̂ < α) where π̂ is the p-value. Consequently, P(µ/τ, n, α) is the power
function and α is the significance level (the power function evaluated at the null hypothesis).5

Likelihood and posterior. Is is convenient to express the likelihood for the truncated
dataset as

p(y|µ, τ2, α, S) =
1(π̂ < α) p(y|µ, τ2)

P(µ/τ, n, α)
. (3.8)

Note that it is possible to learn about α as well as µ and τ2.
The joint posterior for (µ, τ, α) can be expressed as

p(µ, τ2, α|y, S) ∝ p(y|µ, τ2, α, S) p(µ, τ2) p(α) ∝ p(µ, τ2|y)
1(π̂ < α) p(α)

P(µ/τ, n, α)
. (3.9)

The marginal posterior for (µ, τ) is given by

p(µ, τ |y, S) ∝ p(µ, τ |y)W(µ/τ, n, π̂), (3.10)

where the weighted inverse power is

W(µ/τ, n, π̂) =

∫ 1

π̂

p(α)

P(µ/τ, n, α)
dα. (3.11)

Prior. As an example, consider a discrete prior for α:

p(α) =

{
1/4 α ∈ A = {1/100, 1/20, 1/10, 1}
0 otherwise

. (3.12)

This prior includes the possibility of no truncation (α = 1). With this prior,

W(µ/τ, n, π̂) =
1

4

∑
α∈A

1(π̂ < α)

P(µ/τ, n, α)
. (3.13)

Prior for (µ, τ2). Let the prior for (µ, τ2) be given by6,7

p(µ, τ2) = N(µ|m0, τ
2/κ0) Inv-Gamma(τ |a0/2, b0/2). (3.14)

Then

p(µ, τ2|y) = N(µ|m1, τ
2/κ1) Inv-Gamma(τ2|a1/2, b1/2), (3.15)

5A type I error is committed when one rejects a true null hypothesis. The probability of a type I error
is given by the significance level of the test, α. A type II error is committed when one fails to reject a false
null hypothesis. The probability of a type II error (which is denoted β) equals 1− P(µ/τ, n, α).

6If p(τ2) = Inv-Gamma(τ2|a, b) ∝ (1/τ2)1+ae−b/τ
2

, then p(τ) = 2 τ Inv-Gamma(τ2|a, b).
7If p(µ, τ2) = N(µ|m, τ2/κ) Inv-Gamma(τ2|a/2, b/2), then p(µ) = Student-t(µ|m, b/(a κ), a).
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where

κ1 = κ0 + n (3.16a)

m1 =
κ0

κ0 + n
m0 +

n

κ0 + n
µ̂ (3.16b)

a1 = a0 + n (3.16c)

b1 = b0 +
κ0 n

κ0 + n
(µ̂−m0)2 + n (n− 1) σ̂2. (3.16d)

Notice that the observations enter the posterior distribution solely via the sufficient statistic
(n, µ̂, σ̂).8

4. Truncated sampling distribution for the measured effect

In this section we examine the marginal sampling distribution for the measured effect µ̂
(i.e., the sample mean) given the truncated sample space. This distribution allows us to
characterize the Type M (magnitude) and Type S (sign) errors described by Gelman and
Carlin (2014).

The sampling distribution for (µ̂, σ̂) is given by9

p(µ̂, σ̂|µ, τ2, n) = p(µ̂|µ, τ2, n) p(σ̂|τ2, n), (4.1)

where10

p(µ̂|µ, τ2, n) = N
(
µ̂
∣∣∣µ, τ2

n

)
and p(σ̂|τ2, n) = Nakagami

(
σ̂
∣∣∣ n− 1

2
,
τ2

n

)
. (4.2)

The truncation set may be characterized by 1(|µ̂| > cα σ̂) where cα = f−1
n−1(α). The selection

process produces a truncated sampling distribution for the sufficient statistic:

p(µ̂, σ̂|µ, τ2, n, α,S) =
1(|µ̂| > cα σ̂) p(µ̂, σ̂|µ, τ2, n)

P(µ/τ, n, α)
. (4.3)

The truncated distribution is normalized by the probability of selection (i.e., the power).
The truncated sample space produces dependence between µ̂ and σ̂. The marginal sam-

pling distribution for µ̂ given α is obtained by integrating σ̂ out over the selection region
(i.e., σ̂ < |µ̂|/cα):

p(µ̂|µ, τ2, n, α,S) =

∫ |µ̂|/cα
0

p(µ̂, σ̂|µ, τ2, n, α,S) dσ̂

=
p(µ̂|µ, τ2, n)

P(µ/τ, n, α)
C(|µ̂|/cα, τ2, n),

(4.4)

8The Jeffreys prior of p(µ, τ2) ∝ 1/τ2 produces the posterior (3.15)–(3.16) where κ0 = b0 = 0, a0 = −1,
and m0 is unspecified. Consequently, p(µ|y) = Student-t(µ|µ̂, σ̂2, n− 1).

9See Appendix A for omitted details.
10If σ̂ ∼ Nakagami(n−1

2
, τ

2

n
), then σ̂2 ∼ Gamma(n−1

2
, 2 τ2

n (n−1)
).
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where the “correction factor” C is the CDF of the Nakagami distribution evaluated at the
boundary [see (A.7) and (A.8)]:

C(x, τ2, n) =

∫ x

0
p(σ̂|τ2, n) dσ̂ = 1−

Γ
(
n−1

2 , x2
(
n−1

2 / τ
2

n

))
Γ(n−1

2 )
. (4.5)

To illustrate (4.3) and (4.4), let µ = 0.1, τ = 1, and α = 5%. See Figure 4 for the
sampling distribution for (µ̂, σ̂) subject to the restricted sample space. See Figure 5 for the
marginal sampling distribution for µ̂i computed from the distribution shown in Figure 4.
See Figure 6 for the marginal distribution for µ̂ for n ∈ {10, 20, 50}. Note that smaller
studies are associated with larger measured effects in absolute value and larger probabilities
of the incorrect sign. The correction factor is plotted in Figure 7.

5. Multiple datasets

Suppose there were multiple sets of observations, y1:N = (y1, . . . yN ) ∈ Y1 × · · · × YN ,
where yi = (yi1, . . . , yini) ∈ Yi = Rni . Absent truncation, let

p(y1:N |µ, τ2) =
N∏
i=1

p(yi|µ, τ2) =
N∏
i=1

ni∏
j=1

N(yij |µ, τ2). (5.1)

The posterior distribution for (µ, τ2) is given by

p(µ, τ2|y1:N ) ∝ p(y1:N |µ, τ2) p(µ, τ2). (5.2)

The sufficient statistic for each dataset is (ni, µ̂i, σ̂i). The sufficient statistic for the collection

of datasets is given by (n, µ̂, σ̂), where n =
∑N

i=1 ni and

µ̂ =
1

n

N∑
i=1

ni∑
j=1

yij =
N∑
i=1

(ni
n

)
µ̂i (5.3a)

σ̂2 =
1

n (n− 1)

N∑
i=1

ni∑
j=1

(yij − µ̂)2 =
1

n− 1

N∑
i=1

(ni
n

)(
(ni − 1) σ̂2

i + (µ̂i − µ̂)2
)
. (5.3b)

Now let us take the possibility of truncation into account. Let Λi = {yi ∈ Yi : π̂i < αi}.
We have the likelihood

p(y1:N |µ, τ2, α1:N , S) =

N∏
i=1

p(yi|µ, τ2, αi, S)

=
N∏
i=1

1(π̂i < αi) p(yi|µ, τ2)

P(µ/τ, ni, αi)
= p(y|µ, τ2)

N∏
i=1

1(π̂i < αi)

P(µ/τ, ni, αi)
.

(5.4)

Assuming p(α1:N ) =
∏N
i=1 p(αi), the posterior is given by

p(µ, τ2, α1:N |y1:N , S) ∝ p(µ, τ2|y1:N )
N∏
i=1

1(π̂i < αi) p(αi)

P(µ/τ, ni, αi)
, (5.5)
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If all datasets are subject to truncation by the same significance level, the final factor in (5.5)
is replaced by

p(α)
N∏
i=1

1(π̂i < α)

P(µ/τ, ni, α)
= p(α) 1(π̂max < α)

N∏
i=1

1

P(µ/τ, ni, α)
, (5.6)

where π̂max = max(π̂1:N ).

Numerical illustration. In planning an experiment, the researchers decided that the
study should be published in the Journal of Correct Signs. This journal only publishes
studies of experiments for which π̂i < αi for some αi. (A rationale for this decision rule
is given in Section 7.) If the study is not accepted for publication, then the result of the
experiment will not be observed (by the public).

Let µ = 0.1, τ = 1, and α = 5%.
From a total of N∗ = 200 studies conducted (with sample sizes ni ranging from 5 to 50),

N = 20 studies (10%) satisfied the acceptance criterion for publication. See Figure 9. The
acceptance rate for publication is in line with the rejection rate of the null hypothesis given
the average power of about 8%. (The power ranges from about 5.5% for ni = 5 to about
10.5% for ni = 50.)

Let the prior be p(µ, τ) ∝ 1/τ . Figure 10 shows the joint posterior distribution for
(µ, τ) given y that takes the selection process into account. The associated marginal pos-
terior distributions for µ and τ2 are shown in Figures 11 and 12. Figure 13 compares
p(µ|y, α,S,M,J ) with p(µ|y,M,J ).

Up to this point we have assumed the value for was known to be 5%. Now let the prior for
α be given by (3.12). The marginal likelihoods p(y|αj ,S,M,J ) can be calculated following
the procedure described in Appendix A. The posterior odds ratios are equal to the Bayes
factors since the prior probabilities are all equal. For comparison purposes, let us take
α = 5% as the base model. Note that α = 1% is impossible because 1% < πmax = 0.049.
The Bayes factor in favor of α = 10% is on the order of 4 × 10−5 (not very likely) and
the Bayes factor in favor of α = 100% (no selection process) is on the order of 6 × 10−12

(extremely unlikely). Thus the evidence overwhelmingly favors α = 5% to the alternatives.

6. A more general model: Some considerations

In this section I introduce some generalizations. Thus far, the parameters (µ, τ) have
been shared across all studies. We can generalized the likelihood to allow for study-specific
values of these parameters: p(yi|µi, τi, αi,S). Having a well-structured prior for {(µi, τi)}Ni=1
becomes important.

Different types of experiments involving the same effect may exhibit heterogeneity across
the amount of experimental noise. For this case, one can model the individual noises
independently or one can tie them together via prior jointness.

The point of a meta-analysis is to combine the results of different studies of the same
effect. Nevertheless, it may be the case that different experiments measure the same effect
in different ways. In this case, the goal is to compute the posterior distribution for the
generic effect. We can think of this a density estimation for latent variables.
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Start here:

p(y1:N |µ1:N , τ
2
1:N , S) =

N∏
i=1

p(yi|µi, τ2
i , αi, S), (6.1)

where

p(yi|µi, τ2
i , αi, S) =

1(π̂i < αi) p(yi|µi, τ2
i )

P(µi/τi, ni, αi)
∝ 1(π̂i < αi) p(µ̂i, σ̂i|µi, τi, ni)

P(µi/τi, ni, αi)
. (6.2)

Let

p(µ1:N , τ1:N , α1:N |ψµ, ψτ , ψα) = p(µ1:N |ψµ) p(τ1:N |ψτ ) p(α1:N |ψα), (6.3)

and where (for example)

p(µ1:N |ψµ) =
N∏
i=1

p(µi|ψµ) (6.4)

where (for example)

p(µi|ψµ) =

∞∑
c=1

wcµ fµ(µ|θµ). (6.5)

7. Deciding whether to publish a study

This section deals with the editor of the journal. The editor’s decision problem is de-
scribed and then it is shown how the editor can use prior knowledge in the decision process.

The decision problem. An editor must make a decision as to whether to publish a study
or not. Let δ denote the decision, where δ ∈ {accept, reject}. (The terms accept and
reject refer to the publication decision and not to the null hypothesis. Indeed, if the null
hypothesis is rejected then the paper will be accepted (and vice-versa).)

Consider the decision problem facing the editor of the Journal of Correct Signs. Papers
published in this journal claim either a positive effect or a negative effect. An author’s
claim, denoted γ, is determined by the sign of µ̂:

γ =
(
sgn(µ) = sgn(µ̂i)

)
. (7.1)

The editor wishes to publish papers for which the claim about the sign is correct — i.e., for
which

1(γ) = 1. (7.2)

The probability that the claim is correct can be expressed as

ξ = Pr[ 1(γ) = 1 | y, E ] =

{
Pr[µ > 0|y, E ] µ̂ > 0

Pr[µ < 0|y, E ] µ̂ < 0
, (7.3)

where E denotes the editor’s prior information. (Two forms of such prior information are
described below.)
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The optimal decision can be characterized as minimizing the expected loss given the
information the editor has. Suppose the loss function has the following form:

L(γ, δ) =


`0r 1(γ) = 0 and δ = reject

`0a 1(γ) = 0 and δ = accept

`1r 1(γ) = 1 and δ = reject

`1a 1(γ) = 1 and δ = accept

. (7.4)

The expected losses from the two possible decisions are

E[L(γ, reject)|y, E ] = `0r (1− ξ) + `1r ξ (7.5)

E[L(γ, accept)|y, E ] = `0a (1− ξ) + `1a ξ. (7.6)

Suppose there is no loss for making the correct decision: `0r = `1a = 0. Then the editor
will accept the study for publication if `0a (1− ξ) < `1r ξ, which can be expressed as

ξ

1− ξ
>
`0a
`1r

. (7.7)

The expression on the left-hand side is the posterior odds ratio in favor of the claim being
true, while the expression on the right-hand side is the ratio of the loss of publishing a paper
with a false claim to the loss of rejecting a paper with a true claim. Further suppose

`0a
`1r

=
1− α/2
α/2

. (7.8)

(For example, if α = 1/20 then `0a/`1r = 39.) In this case the editor will accept the paper
for publication if

2 (1− ξ) < α. (7.9)

We now turn to how an editor may determine ξi. We consider two types of editor: the
ignorant/objective editor and the informed editor.

An ignorant/objective editor. We characterize the ignorant/objective editor in terms
of the Jeffreys prior. The marginal posterior distribution for µ given the Jeffreys prior is
p(µ|y,J ) = Student-t(µ|µ̂, σ̂2, n − 1) [see (D.5)]. Using this distribution, the probability
that µ has the same sign as µ̂ is

ξ = Pr[ 1(γ) = 1 |y,J ] =

{∫∞
0 p(µ|y,J ) dµ µ̂ > 0∫ 0
−∞ p(µ|y,J ) dµ µ̂ < 0

= Φn−1(|t̂|)
= 1− π̂/2.

(7.10)

Thus, the p-value equals twice the probability that µ has the opposite sign of µ̂:

π̂ = 2 (1− ξ). (7.11)

Therefore, an ignorant/objective editor would publish the paper if π̂ < α.

(We can visualize (7.10) by considering the posterior probability of the equivalent condi-
tion sgn(µ/σ̂) = sgn

(
t̂
)
. The visualization is presented in Figure 14 for µ̂ > 0.)
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An informed editor. Suppose the editor has the conjugate prior for (µ, τ2) given by (3.14).
The marginal posterior for µ is given by Student-t(µ|m1, s

2
1, a1), where s2

1 = b1/(a1 κ1). De-
fine t1 = m1/s1 and π1 = fa1(|t1|). Following (7.10), ξ = 1− π1/2. Given the loss function
described above, the informed editor would publish the paper if π1 < α. To the outside
observer who does not know the editor’s prior, the acceptance criterion will appear to be
π̂ < α̃, where the apparent significance level, α̃ = (π̂/π1)α, depends on the prejudices of
the editor.

Appendix A. Additional material

Sampling theory. We know from from sampling theory

z :=
µ̂i − µ
τ/
√
ni

∣∣∣µ, τ, ni ∼ N(0, 1) (A.1)

and

v :=
ni (ni − 1) σ̂2

i

τ2

∣∣∣ τ, ni ∼ χ2
ni−1. (A.2)

We also know z and v are (conditionally) independent. Therefore,

µ̂i =
τ z
√
ni

+ µ
∣∣∣µ, τ, ni ∼ N(µ, τ2/ni) (A.3)

and

σ̂i =

√
τ2 v

ni (ni − 1)

∣∣∣ τ, ni ∼ Nakagami
(ni − 1

2
,
τ2

ni

)
, (A.4)

where µ̂i and σ̂i are (conditionally) independent. The mean and variance of σ̂i are ζi (τ/
√
ni)

and (1− ζ2
i ) (τ2/ni), where

ζi =
Γ(ni/2)

Γ
(
(ni − 1)/2

) √ 2

ni − 1
. (A.5)

Note ζi < 1 and limni→∞ ζi = 1.

Nakagami distribution. If x ∼ Gamma(a, c), then
√
x ∼ Nakagami(a, b) where b = a c.

The PDF for the Nakagami distribution is

Nakagami(x|a, b) =
2
(
a
b

)a
x2 a−1e−

a x2

b

Γ(a)
. (A.6)

The CDF for the Nakagami distribution is∫ x

0
Nakagami(s|a, b) ds = 1−

Γ
(
a, x2 (a/b)

)
Γ(a)

, (A.7)

where Γ(a, c) =
∫∞
c ta−1 e−t dt is the incomplete gamma function. Thus∫ |µ̂i|/ci

0
p(σ̂i|τ, ni) dσ̂i = 1−

Γ
(
ni−1

2 , (µ̂i/ci)
2 (ni−1

2 / τ
2

ni
)
)

Γ(ni−1
2 )

. (A.8)
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Sampling distribution for the t statistic. The sampling distribution for the t statistic
can be derived from the distribution for (µ̂i, σ̂i). By the change of variables formula the
sampling distribution for (t̂i, σ̂i) is

p(t̂i, σ̂i|µ, τ, ni) = σ̂i p(µ̂i, σ̂i|µ, τ, ni)|µ̂i=t̂i σ̂i
= N(t̂i|µ/σ̂i, (τ2/ni)/σ̂i)Nakagami(σ̂i|(ni − 1)/2, τ2/ni).

(A.9)

We can integrate out σ̂i thereby obtaining the sampling distribution for the t statistic:

p(t̂i|µ, τ, ni) =

∫ ∞
0

p(t̂i, σ̂i|µ, τ, ni) dσ̂i

= Noncentral-t
(
t̂i|ni − 1,

√
ni (µ/τ)

)
.

(A.10)

The power function. We can express the likelihood in terms of these sample statistics as

p(yi|µ, τ) =

ni∏
j=1

N(yij |µ, τ2) = p(µ̂i, σ̂i|ni, µ, τ)h(yi), (A.11)

where zi = (µ̂i, σ̂i) is a sufficient statistic for yi and where Zi = R× R+.
Given this criterion, the restricted space for the sufficient statistic is

Ωci = {(µ̂i, σ̂i) ∈ Zi : |µ̂i| > ci σ̂i}, (A.12)

where the selection criterion has been expressed explicitly in terms of the sufficient statistic.
The power function can be computed using the sampling distribution for the t statistic,

which itself is computed from the sampling distribution for the sufficient statistic:

p(t̂i|µ, τ, ni) = Noncentral-t
(
t̂i|ni − 1,

√
ni (µ/τ)

)
, (A.13)

with ni − 1 degrees of freedom and noncentrality parameter
√
ni (µ/τ). Note the sampling

distribution for the t statistic depends on µ and τ only via their ratio µ/τ . Also note

Noncentral-t(ν, 0) ≡ Student-t(0, 1, ν). (A.14)

The power function is given by

PΩci
(µ, τ) = 1−

∫ ci

−ci
p(t̂i|µ, τ, ni) dt̂i

= 1−
∫ ci

−ci
Noncentral-t

(
t̂i|ni − 1,

√
ni (µ/τ)

)
dt̂i

= 1− Φni−1,
√
ni (µ/τ)(ci) + Φni−1,

√
ni (µ/τ)(−ci).

(A.15)

Figure 15 illustrates (A.15).

Numerical evaluation. Consider the case of a meta-analysis. (The case of a single study
is a simple specialization.) Most of the computation is involved in evaluating the power
function. For each required value of ni and αj , one can precompute P(λk, ni, αj) over a
grid {λk} from 0 to `niαj where P(`niαj , ni, αj) ≈ 1. Let

Kj(µ, τ) :=
p(µ, τ |y,M, I)∏N
i=1 P(µ/τ, ni, αj)

. (A.16)
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One can numerically integrate Kj(µ, τ) to obtain

p(y|αj ,S,M, I) =

∫ ∞
0

∫ ∞
−∞

Kj(µ, τ) dµ dτ (A.17)

and compute

p(y|S,M, I) =
J∑
j=1

p(αj) p(y|αj ,S,M, I). (A.18)

Posterior probabilities for αj are given by

p(αj |y,S,M, I) =
p(αj) p(y|αj ,S,M, I)

p(y|S,M, I)
. (A.19)

Implied prior for λ. Given the informed editor’s prior for (µ, τ2) [see (??)], the general
expression for the implied prior for λ is

p(λ|E) = N(λ|0, 1/κ)×
(

ν s2

κm2 + ν s2

)ν/2
×1F1

(
ν

2
;
1

2
;

m2κ2λ2

2 (κm2 + ν s2)

)
+

√
2κλmΓ

(
ν+1

2

)
1F1

(
ν+1

2 ; 3
2 ; m2κ2λ2

2 (κm2+ν s2)

)
Γ
(
ν
2

)√
κm2 + ν s2

 , (A.20)

where 1F1( · , · , · ) is the Kummer confluent hypergeometric function.

Appendix B. A simple example: Widgets in a box

This section presents a simple example that illustrates many of the points discussed in
the main text. Some readers may find it useful.

A machine produces widgets in batches and deposits them in a box. Each time the
machine is activated it is supposed to produce a single widget, but sometimes it fails and
produces nothing. The probability of success for a given activation does not depend on the
success of other activations.

Box i has ni slots, each of which can hold one widget. The machine is activated once
for each slot. Let yij indicate whether slot j in box i holds a widget after the machine is
finished with its activations:

yij =

{
1 success: slot j in box i is occupied

0 failure: slot j in box i is empty
. (B.1)

We may write yij ∈ Y = {0, 1} and yi = (yi1, . . . , yini) ∈ Yni = {0, 1}ni . The sample space
Yni contains 2ni elements. Let θ denote the probability of success. (I will also refer to θ
as the efficiency of the machine). The sampling distribution for a single activation can be
expressed as

p(yij |θ) = Bernoulli(yij |θ) = (1− θ)1−yij θyij . (B.2)
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The sampling distribution for the sequence of slots in a box is given by

p(yi|θ) =

ni∏
j=1

p(yij |θ) =

ni∏
j=1

(1− θ)1−yij θyij = (1− θ)ni−zi θzi , (B.3)

where

zi :=

ni∑
j=1

yij (B.4)

is the number of widgets in box i.
Here is an example of a truncation. Let ni = 4 and let

Λi = {yi ∈ {0, 1}4 : zi = 0 ∨ zi = 4}. (B.5)

Note

PΛi(θ) = (1− θ)4 + θ4. (B.6)

Null hypothesis significance testing. A researcher at the factory examines box i as it
comes off the production line, observes the sequence of occupied and empty slots, and records
the dataset yi. Given this dataset, the researcher conducts a null hypothesis significance
test regarding the efficiency of the machine. The null hypothesis is H0 : θ = 1/2 and the
alternative hypothesis is H1 : θ 6= 1/2.

To conduct the test, the researcher chooses zi as the test statistic. The sample space for
zi is

Zi = {0, 1, . . . , ni}, (B.7)

and the sampling distribution for this test statistic is

p(zi|ni, θ) = Binomial(zi|ni, θ) =

(
ni
zi

)
(1− θ)ni−zi θzi . (B.8)

Note that
∑

zi∈Zi p(zi|ni, θ) = 1. Consider a subset Ωi ⊂ Zi and the probability

Pr[zi ∈ Ωi | θ] =
∑
zi∈Ωi

p(zi|ni, θ). (B.9)

The researcher happened to choose a box with ni = 4 slots. For this box, the probability
distribution for the number of widgets in box i is

p(zi|ni = 4, θ) =



(1− θ)4 zi = 0

4 (1− θ)3 θ zi = 1

6 (1− θ)2 θ2 zi = 2

4 (1− θ) θ3 zi = 3

θ4 zi = 4

. (B.10)

Given ni = 4 and Zi = {0, 1, 2, 3, 4}, the researcher wishes to associate extreme values of
the test statistic with rejection of the null hypothesis. To this end, the researcher constructs
the critical region (also known as the rejection region) as follows:

Ωi = {zi ∈ Zi : |zi − 2| > 1} = {0, 4}. (B.11)
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Note that Ωi is a proper subset of Zi. If zi ∈ Ωi then the null hypothesis will be rejected.
The power function is the probability that the null hypothesis is rejected (as a function of
the probability of success):

PΩi(θ) =
∑
zi∈Ωi

Binomial(zi|ni = 4, θ) = (1− θ)4 + θ4. (B.12)

Note we are sure to reject if either θ = 0 or θ = 1: PΩi(θ = 0) = PΩi(θ = 1) = 1.
The significance level of the hypothesis test, denoted αi, equals the power function eval-

uated at the null hypothesis:

αi = PΩi(θ = 1/2) = 1/8. (B.13)

So the probability of rejecting the null hypothesis when the null hypothesis is true is 1/8.
If the null hypothesis is rejected then the experimental result will be declared significant
with a significance level of 1/8.

The researcher submits the paper to the Journal of Significant Widget Results. This
journal only publishes papers that report significant results (with a significance level of
1/8). As it turns out, zi = 4 and the paper is published.

Inference. Inference regarding θ based on the distribution for the test statistic zi is equiv-
alent to inference based on the distribution for the dataset yi because the ratio

p(zi|ni, θ)
p(yi|θ)

=

(
ni
zi

)
(B.14)

does not depend on θ. Interpreted as likelihoods for θ, the two sampling distributions
contain the same information. This may be summarized by noting that zi (along with ni)
is a sufficient statistic for yi. The upshot is that for any prior distribution p(θ) the two
posterior distributions are the same:

p(θ|ni, zi) =
p(zi|ni, θ) p(θ)∫
p(zi|ni, θ) p(θ) dθ

=
p(yi|θ) p(θ)∫
p(yi|θ) p(θ) dθ

= p(θ|yi). (B.15)

In the published paper, the researcher reports the likelihood for θ given the outcome
zi = 4 based on the sampling distribution (B.10) as

p(zi = 4|ni = 4, θ) = Binomial(zi = 4|ni = 4, θ) = θ4. (B.16)

The researcher points out that if the prior for θ were p(θ) = 1, then the posterior for θ
would be

p(θ|ni = 4, zi = 4) =
p(zi = 4|ni = 4, θ) p(θ)∫ 1

0 p(zi = 4|ni = 4, θ) p(θ) dθ
= 5 θ4. (B.17)

What can a reader of the JSWR infer about the efficiency of the machine from this pub-
lished study? As far as the reader is concerned, the data-generating mechanism includes the
selection process: the journal does not publish studies with insignificant results. Therefore,
datasets for which zi ∈ Zi \ Ωi = {1, 2, 3} cannot be observed. Consequently, the sample
space for datasets is restricted to

Λi = {yi ∈ Yni : zi ∈ Ωi}. (B.18)
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Because zi is a sufficient statistic, we may continue to conduct inference based on its relevant
sample space, which now is restricted to Ωi.

The sampling distribution needs to be normalized by the probability of the restricted
sample space. This normalization amounts to a form of inverse probability weighting using
the power function. Accordingly, the sampling distribution for the restricted sample space
is given by

p(zi|ni = 4, θ,Si) =
Binomial(zi|ni = 4, θ)

PΩi(θ)
=

{
(1−θ)4

(1−θ)4+θ4 zi = 0
θ4

(1−θ)4+θ2 zi = 4
, (B.19)

where Si denotes the selection process. The likelihood based on the sampling distribu-
tion (B.19) given zi = 4 is

p(zi = 4|ni = 4, θ,Si) =
Binomial(zi = 4|ni = 4, θ)

PΩi(θ)
=

θ4

(1− θ)4 + θ4
. (B.20)

If the prior for θ were p(θ) = 1, then the posterior for θ would be

p(θ|ni = 4, zi = 4,Si) =
p(zi = 4|ni = 4, θ,Si) p(θ)∫ 1

0 p(zi = 4|ni = 4, θ,Si) p(θ) dθ
=

2 θ4

(1− θ)4 + θ4
. (B.21)

See Figure 16 for plots of (B.17) and (B.21).

Meta-studies. Over time, the JSWR published 100 studies of the widget machine, each
with ni = 4 and Ωi = {0, 4}. (It is straightforward to combine studies with different sample
sizes and different selection criteria into a single meta study.) Of the 100 studies, 96 reported
zi = 4 and four reported zi = 0.

A first meta-study aggregates the data without considering the restrictions on the sample
spaces imposed by the selection criteria. This study reports a likelihood of

p(z|n, θ) = p(zi = 0|ni = 4, θ)4 p(zi = 4|ni = 4, θ)96 = (1− θ)16 θ384, (B.22)

where z = (z1, . . . , z100) and n = (n1, . . . , n100). The maximum of p(z|n, θ) occurs at
θ = 0.96. (In passing, it may be noted that the studies that reported zi = 0 were considered
by many researchers to have been conducted incompetently because the probability that a
correctly conducted study would have produced zi = 0 given the well-established value of
θ ≥ 0.96 is less than 3× 10−6.)

A second meta-study takes the restricted sample space Ωi into account and reports a
likelihood of

p(z|n, θ,S) =
p(z|n, θ)∏100
i=1 PΩi(θ)

=
(1− θ)16 θ384

((1− θ)4 + θ4)100
, (B.23)

where S = (S1, . . . ,S100). The factor
(∏100

i=1 PΩi(θ)
)−1

in the likelihood acts like a strong

prior that shrinks the likely values of θ toward 1/2. The maximum of p(z|n, θ,S) occurs as
θ = 0.69.

See Figure 17 for posterior distributions computed using p(θ) = 1, so that p(θ|n, z) ∝
p(z|n, θ) and p(θ|n, z,Ω) ∝ p(z|n, θ,Ω).
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Increased sample size. Holding the significance level fixed, an increase in the sample size
will increase the power. If the power is increased sufficiently, the power function becomes
relatively flat over the rejection region with the result that the normalization factor has
very little effect.

Example. Suppose

Ωi = {zi ∈ Zi : |zi − ni/2| > ζi}. (B.24)

For ni = 4 we set ζi = 1 which produced Ωi = {0, 4} and delivered αi = PΩi(θ = 1/2) =
0.125. For ni = 408 and ζi = 15, we get αi ≈ 0.125. Suppose a single study finds zi = 279.
In this case, the adjustment to the likelihood, 1/PΩi(θ), produces no noticeable effect on
the posterior distribution.

Uncertainty about the significance level. Suppose that there is uncertainty about the
significance level used in the selection process. In particular, suppose there are two possible
values for the significance level:

αi ∈ A = {1/8, 1}. (B.25)

It is convenient to express the power function in terms of the significance level αi instead
of the restricted set Ωi. Consider the case where ni = 4. Then

αi = PΩi(θ = 1/2) =

{
1/8 Ωi = {0, 4}
1 Ωi = {0, 1, 2, 3, 4}

. (B.26)

With this correspondence, we can express the power function as

P(θ, ni = 4, αi) =

{
(1− θ)4 + θ4 αi = 1/8

1 αi = 1
. (B.27)

This allows us to express the likelihood associated with the selection process in terms of the
significance level:

p(zi|ni, θ, αi) =
p(zi|ni, θ)
P(θ, ni, αi)

. (B.28)

Assuming prior independence between θ and αi [i.e., p(θ, αi) = p(θ) p(αi)], the joint
posterior distribution for θ and αi is given by

p(θ, αi|zi, ni,Si) =
p(zi|ni, θ, αi) p(θ) p(αi)

p(zi|ni,Si)
, (B.29)

where the marginal likelihood is given by

p(zi|ni,Si) =
∑
αi∈A

p(αi)

∫ 1

0
p(zi|ni, θ, αi) p(θ) dθ. (B.30)

Let the prior be given by p(θ) = 1 and

p(αi) =

{
1/2 αi = 1/8

1/2 αi = 1
. (B.31)
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Then the marginal likelihood is

p(zi = 4|ni = 4,Si) =
1

2

∫ 1

0

θ4

(1− θ)4 + θ4
+ θ4 dθ =

7

20
, (B.32)

and consequently the joint posterior distribution is

p(θ, αi|zi = 4, ni = 4,Si) =

{(
5
7

)
2 θ4

(1−θ)4+θ4 αi = 1/8(
2
7

)
5 θ4 αi = 1

. (B.33)

The marginal posterior for θ is a mixture of the two posterior distributions displayed in
Figure 16:

p(θ|zi = 4, ni = 4,Si) =
∑
αi∈A

p(θ, αi|zi = 4, ni = 4,Si) =

(
5

7

)
2 θ4

(1− θ)4 + θ4
+

(
2

7

)
5 θ4.

(B.34)
The marginal posterior for αi is

p(αi|zi = 4, ni = 4,Si) =

∫ 1

0
p(θ, αi|zi = 4, ni = 4,Si) dθ =

{
5/7 αi = 1/8

2/7 αi = 1
. (B.35)

Thus the probability of αi = 1/8 increases from 1/2 (according the prior) to 5/7 (according
to the posterior).

Additional expression. In passing, it is interesting to note that we can express the joint
posterior distribution for θ and αi in terms of the posterior for θ absent the selection
process and an additional factor:

p(θ, αi|zi, ni,Si) ∝ p(zi|ni, θ, αi) p(θ) p(αi)

= p(zi|ni, θ) p(θ)
p(αi)

P(θ, ni, αi)

∝ p(θ|zi, ni)
p(αi)

P(θ, ni, αi)
.

(B.36)

Therefore, the marginal posterior for θ can be expressed as

p(θ|zi = 4, ni = 4,Si) ∝ p(θ|zi = 4, ni = 4)
∑
αi∈A

p(αi)

P(θ, ni = 4, αi)

= 5 θ4 × 1

2

(
1

(1− θ)4 + θ4
+ 1

)
.

(B.37)

An even simpler example to illustrate an alternative approach. Let θ denote the
probability of success for a Bernoulli trial (e.g., flipping a coin and getting heads). Consider
a single trial (coin flip), ni = 1. Then Yni = {0, 1} and Zi = {0, 1}. Let the critical region
be Ωi = {1}. The power function is

PΩi(θ) = θ. (B.38)

Let the null hypothesis be H0 : θ = 0.05 and let the alternative be H1 : θ > .05. If ki = 1
then the result is (just) significant at the 5% level and the result is published. What can
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be inferred about the probability of success from the published result? Given the restricted
sampling space, the sampling distribution is

p(ki = 1|θ,Ωi) =
Bernoulli(ki = 1|ni = 1, θ)

PΩi(θ)
= 1. (B.39)

Reinterpreting the sampling distribution as the likelihood for θ, we see that the likelihood
contains no information about θ and nothing can be learned (beyond learning that heads is
indeed possible; i.e., θ > 0).

Suppose 100 such studies (based on the same coin) are published. What can we infer
about the probability of heads? Because each study has no information about θ, all studies
together have no information.

Alternative approach. An alternative approach, in the spirit of Rosenthal (1979), is to con-
sider the studies that remain in the file drawers. Suppose there are N0 studies in the file
drawer where ki = 0 and N1 published studies where ki = 1. Conditional on N1 and θ, the
sampling distribution for N0 is

p(N0|N1, θ) = Neg-Binomial(N0|N1, θ) =

(
N0 +N1 − 1

N1 − 1

)
θN1 (1− θ)N0 . (B.40)

The mean of this distribution is E[N0|N1, θ] = N1 (1 − θ)/θ. Under the null hypothesis
θ = 1/20 we would expect 19N1 studies in file drawers. For example if N1 = 100 then we
expect 1900 studies in file draws. If we assume there are actually far fewer such studies in
file drawers then we can reject the null hypothesis. This appears to involve prior information
regarding N0.

Given such prior information, it is more direct use it to compute the posterior distribution
for θ. Note that

p(N0, N1, θ) = p(N1|N0, θ) p(N0, θ), (B.41)

where

p(N1|N0, θ) = Neg-Binomial(N1|N0, 1− θ) =

(
N0 +N1 − 1

N0 − 1

)
θN1 (1− θ)N0 . (B.42)

Suppose p(N0, θ) = p(N0) p(θ). Then

p(θ|N1) =
p(N1|θ) p(θ)∫ 1

0 p(N1|θ) p(θ) dθ
, (B.43)

where

p(N1|θ) =

∞∑
N0=0

p(N1|N0, θ) p(N0) = θN1

∞∑
N0=0

(
N0 +N1 − 1

N0 − 1

)
(1− θ)N0 p(N0). (B.44)

For example, suppose

p(N0) = Neg-Binomial(N0|500/199, 1/200), (B.45)

so that N0 has a prior mean of 500 and variance of 105. Also suppose p(θ) = 1. The
posterior distribution for θ is shown in Figure 18.
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Appendix C. A story

The section was the original introductory illustration. Currently it provides a story for
the example.

Consider an effect that has been established and confirmed by a twenty published studies.
Nineteen of the published studies have statistically significant positive results; the remaining
study has a statistically significant negative result. The results of the latter study are viewed
as having been produced by bad luck. The experiments range in size from seven to fifty
subjects/measurements. See Figure 8 for the distribution of the published results.

A graduate student who is familiar with the published results conducts his own experi-
ment but fails to get a significant result. He supposes that chance and/or lack of competence
has played a role. He decides to investigate further and finds a meta-analysis combining all
twenty published results. See Figure 19 for the posterior distribution of the effect computed
from the meta-analysis. The probability that the effect is less than 0.2 is quite small, about
2× 10−5.

After some additional study, the student concludes the meta-analysis was incorrectly done
because it did not account for the selection process by which only studies with statistically
significant results are published. One tell-tale feature of the selection process (which is
visible in Figure 8) is that smaller experiments tend to show larger measured effects. He
decides to do his own meta-analysis.

The back story. The published studies are consistent with a true effect equal to 0.1
and a standard deviation for each observation equal to 1. Two hundred experiments were
conducted of which twenty produced statistically significant results, where significance is
judged according to a two-tailed test with a significance of 5%. The rate of rejection of the
null hypothesis is 10%, which is in line with the true rejection rate of about 8% (since the
true effect does not equal zero). See Figure 9. The 180 studies with insignificant results
were not published and the results of those experiments constitute missing datasets.

See Figure 13 for a comparison of the posterior distribution that properly takes the
selection process into account with the distribution that does not. The evidence in favor
of the adjusted distribution (relative to the unadjusted distribution) is overwhelming. The
publication selection process has a large effect on results in this example because the power
of the hypothesis tests involved is low. (Power is the probability of rejecting the null
hypothesis when it is false.) The sample sizes are too small given the size of the true effect
relative to the noise in the experiments. The adjustment required to properly account
for the selection process amounts to dividing by the power for each experiment. Because
the power reaches its minimum when the effect is zero, dividing by the power shrinks the
distribution for the effect toward zero.

Appendix D. Bayesian inference absent the selection process

In this section I analyze the data assuming there is no selection process.
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The likelihood for (µ, τ) is given by

p(yi|µ, τ) =

ni∏
j=1

N(yij |µ, τ2), (D.1)

where yi is fixed. The likelihood is proportional to the sampling distribution shown in (4.1):

p(yi|µ, τ) ∝ p(µ̂i, σ̂i|µ, τ, ni). (D.2)

This demonstrates that (ni, µ̂i, σ̂i) is a sufficient statistic for the data. The posterior distri-
bution for (µ, τ) can be expressed as

p(µ, τ |yi, I) ∝ p(µ̂i, σ̂i|µ, τ, ni) p(µ, τ), (D.3)

where I denotes the prior information.

Jeffreys prior. If we adopt the Jeffreys prior,11

p(µ, τ) ∝ 1/τ, (D.4)

then the marginal posterior for µ is12

p(µ|yi,J ) =

∫
p(µ, τ |yi,J ) dτ = Student-t(µ|µ̂i, σ̂2

i , ni − 1), (D.5)

where J denotes the Jeffreys prior. The location and scale parameters of the posterior
distribution for µ are µ̂i and σ̂i. In addition, if ni ≥ 3, then the mean is µ̂i and if ni ≥ 4
then the standard deviation is √

ni − 1

ni − 3
σ̂i. (D.6)

We can express the posterior in (D.5) as

µ− µ̂i
σ̂i

∣∣∣ yi,J ∼ Student-t(0, 1, ni − 1). (D.7)

Note the similarity in form between (D.7) and the sampling distribution

µ̂i − µ
σ̂i

∣∣∣µ, ni ∼ Student-t(0, 1, ni − 1), (D.8)

which can be derived from (4.1). Also note the conceptual distinctions: In (D.8) we are
conditioning on the unknown true effect (and the sample size), while in (D.7) we are con-
ditioning on the observed data.

11This prior produces the same posterior for (µ, τ) as does the prior p(µ, τ2) ∝ 1/τ2. In the first case
p(µ, τ |y,J ) ∝ p(yi|µ, τ)/τ while in the second case p(µ, τ2|yi,J ) ∝ p(yi|µ, τ2)/τ2. By the the change of
variables formula, p(µ, τ |yi,J ) = 2 τ p(µ, τ2|yi,J ). I will adopt whichever is more convenient to the task at
hand.

12The marginal posterior for τ is characterized by τ2 ∼ Inv-Gamma
(
(ni − 1)/2, σ̂2

i ni (ni − 1)/2
)
.
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Meta-analysis. It is straightforward to combine the results from difference studies/exper-
iments into the results from one large study/experiment. The meta-analysis merges the
results of the individual experiments into a single large experiment.

Let y = (y1, . . . , yN ). A sufficient statistic for each study is (ni, µ̂i, σ̂i). Let M denote
the meta-analysis. The combined likelihood for (µ, τ) is

p(y|µ, τ,M) =

N∏
i=1

p(yi|µ, τ) ∝ N
(
µ
∣∣∣µ, τ2

n

)
Nakagami

(
σ
∣∣∣ n− 1

2
,
τ2

n

)
, (D.9)

where (n, µ, σ) is a sufficient statistic for y, and where n =
∑N

i=1 ni and

µ =
N∑
i=1

(ni
n

)
µ̂i (D.10)

σ2 =
1

n− 1

N∑
i=1

(ni
n

)(
(ni − 1) σ̂2

i + (µ̂i − µ)2
)
. (D.11)

The posterior distribution can be expressed as

p(µ, τ |y,M, I) ∝ p(y|µ, τ,M) p(µ, τ). (D.12)

Given the Jeffreys prior, the marginal posterior for µ is

p(µ|y,M,J ) = Student(µ|µ, σ2, n− 1). (D.13)

The associated p-value is π = fn−1(|t|), where t = µ/σ.
This is the meta-analysis that is (incorrectly) applied to the published data as discussed

in Section C [see Figure 19]. The application of this meta-analysis to the published data is
inappropriate because it ignores the effects of the selection process on the likelihood.

Appendix E. Expected power [Incomplete]

When designing an experiment, one may wish to consider the power one can expect.
Let p(λ|I) denote the prior for λ where I denotes the prior information. The prior

expected power is given by

P(ni, α|I) =

∫
P(λ, ni, α) p(λ|I) dλ. (E.1)

Given a prior for (µ, τ2) of the following form,13

p(µ, τ2|I) = N(µ|m, τ2/κ) p(τ2|I), (E.2)

the prior distribution for (λ, τ2) is

p(λ, τ2|I) = N(λ|m/τ, 1/κ) p(τ2|I). (E.3)

13The informed editor’s prior for (µ, τ2) has the form of (E.2) [see (??)]. The general expression for
p(λ|E) is complicated [see (A.20)].
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If m = 0 then p(λ|I) = N(λ|0, 1/κ) (where κ is the precision) and λ and τ are independent.
In this case, the prior expected power has these features:

lim
κ→0

P(ni, α|I) = 1 (E.4)

lim
κ→∞

P(ni, α|I) = α. (E.5)

Figure 20 illustrates how P(ni, α|I) increases with sample size, given m = 0, α = 5%, and
various values of κ.

Given the results of an experiment, the posterior expected power is

P(ni, α|yi, I) =

∫
P(λ, ni, α) p(λ|yi, I) dλ. (E.6)

The informed editor’s posterior distribution for (µ, τ2) has the same form as the prior, and
consequently the posterior distribution for λ can be computed from (A.20).

Appendix F. Linear regression [Incomplete]

We now examine the case of linear regression with normally-distributed errors. Suppose

yi = Xi βi + εi, (F.1)

where εi ∼ N(0, τ2
i Ini). Then

p(yi|βi, τi) = N(yi|Xi βi, τ
2
i Ini) = p(β̂i, si|βi, τi, X>i Xi, ni)h(yi, Xi), (F.2)

where
β̂i = (X>i Xi)

−1X>i yi (F.3)

and
s2
i = (yi −Xi β̂i)

>(yi −Xi β̂i). (F.4)
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Figure 1. Plot of fν(x) given ν = 19.
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Figure 2. Plot of the power P(λ, n, α) given n = 20 and α = 0.05.
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Figure 3. Plot of 1/P(λ, n, α) given n = 20 and α = 0.05.
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Figure 4. Contours of p(µ̂, σ̂|µ, τ2, n, α, S), the sampling distribution for
(σ̂, µ̂) subject to the selection process. The values for the parameters in this
illustration are µ = 0.1, τ = 1, n = 20, and α = 5%. The line σ̂ = |µ̂|/cα is
shown. The probability below the line is given by the power P(µ/τ, n, α) =
0.07.
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Figure 5. Plot of p(µ̂|µ, τ2, n, α, S), the marginal sampling distribution for
µ̂ given Sα (in blue) computed from the joint distribution shown in Figure 4,
where µ = 0.1, τ = 1, n = 20, and α = 5%. The average value of |µ̂| is 0.51,
and the probability that µ̂ < 0 is about 12%. The unadjusted distribution
is shown for comparison.
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Figure 6. Plots of p(µ̂|µ, τ2, n, α, S), the sampling distribution for µ̂ given
the selection process (assuming µ = 0.1, τ = 1, and α = 5%) for n ∈
{10, 20, 50}. The blue curve is the same as shown in Figure 5. Smaller
studies tend to have larger measured effects in absolute value (reflecting
Type M errors) and larger probability of incorrect sign (reflecting Type S
errors).
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Figure 7. Plot of the correction factor C(µ̂, τ2, n, α) =
∫ |µ̂|/cα

0 p(σ̂|τ2, n) dσ̂
for n ∈ {10, 20, 50}, assuming µ = 0.1, τ = 1, and α = 5%.
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Figure 8. Plot of (µ̂i, σ̂i) for 20 published studies, where µ̂i is the measured
effect and σ̂i is a measure of the uncertainty regarding µ̂i. The sample size is
proportional to the area of the dot. The weighted mean from all the studies
equals 0.349.
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Figure 9. Plot of (µ̂i, σ̂i) for all 200 experiments, where µ̂i is the measured
effect and σ̂i is a measure of the uncertainty regarding µ̂i. The sample size
is indicated by the area of the dot. The weighted mean from all the studies
equals 0.109, which is in line with the true effect.
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Figure 10. Contours of the joint posterior distribution p(µ, τ |y,Sα,M,J )
from the meta-analysis M taking into account the selection process Sα and
using the Jeffreys prior J , given α = 5%.
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Figure 11. The marginal posterior distribution p(µ|y,Sα,M,J ) from the
meta-analysisM taking into account the selection process Sα and using the
Jeffreys prior J , given α = 5%.
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Figure 12. The marginal posterior distribution p(τ |y,Sα,M,J ) from the
meta-analysisM taking into account the selection process Sα and using the
Jeffreys prior J , given α = 5%.



THE POWER FUNCTION AND THE “FILE DRAWER PROBLEM” 31

adjusted

unadjusted

-0.5 0.0 0.5 1.0

μ

pr
ob
ab
ili
ty
de
ns
ity

Figure 13. Posterior distributions p(µ|y, α,S,M,J ) and p(µ|y,M,J ).
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Figure 14. Given µ̂ > 0, the p-value π̂ equals twice the posterior probability
Pr[µ/σ̂ < 0|yJ ].
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Figure 15. Plots of p(t̂i|µ, τ, ni) for two values of µ, given τ = 1 and ni =
20. The critical values are shown given α = 0.05. Note that P(0, ni, α) =
B + C +D = 0.05 and P(0.1, ni, α) = A+B +D = 0.07.
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Figure 16. Posterior distributions p(θ|ni = 4, zi = 4) and p(θ|ni = 4, zi = 4,Si).
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Figure 17. Posterior distributions from two meta-studies of the same 100 studies.
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Figure 18. Posterior distribution.
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Figure 19. Meta-analysis based on all 20 published studies. The posterior
distribution for µ is Student t with a mean of 0.349, a standard deviation of
0.036, and 661 degrees of freedom.

2 5 10 20 50 100 200 500 1000 2000
0.0

0.2

0.4

0.6

0.8

1.0

ni

E
xp
ec
te
d
po
w
er
:

(n
i,α

|ℐ
)

κ
1

10

1

10

Figure 20. Expected power P(ni, α|I) as a function of ni, given α = 5%
and p(λ|I) = N(λ|0, 1/κ), where κ = 1

10 , 1, 10.


